Sankalp Rai Gambhirยท Fullstack Software & AI Engineer
HomeProjectsInsightsSkillsBlogContactResume
Back to Insights
Event Streaming
February 20, 2024
5 min read

Kafka Consumer Groups

Build scalable message processing with Kafka consumer groups and automatic rebalancing

KafkaNode.jsDistributed Systems
The Problem

Processing high-throughput message streams requires parallel processing across multiple consumers while ensuring message ordering and fault tolerance.

The Solution

Use Kafka consumer groups to distribute partitions across multiple consumers, enabling horizontal scaling with automatic rebalancing when consumers join or leave.

Kafka Consumer Group Setup
javascript
const consumer = new Kafka({
  clientId: 'app-consumer',
  brokers: ['kafka:9092']
}).consumer({ groupId: 'payment-group' });

await consumer.subscribe({ topic: 'transactions' });
await consumer.run({ eachMessage: processor });
Key Takeaways
  • Parallel processing with automatic rebalancing
  • Consumer groups enable horizontal scaling
  • Each partition consumed by only one consumer in group
  • Automatic failover when consumers crash
Common Use Cases
Event-driven microservices
Real-time data pipelines
Log aggregation
Related Resources
Kafka Documentation